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Chapter one


Basic Principles of Groundwater Flow


1.1 Introduction
Groundwater is water that exists in the pore spaces and fractures in rocks and sediments beneath the Earth’s surface. It originates as rainfall or snow, and then moves through the soil and rock into the groundwater system, where it eventually makes its way back to the surface streams, lakes, or oceans. Groundwater makes up about 1% of the water on the Earth (most water is in oceans). Groundwater makes up to 35 times the amount of water in lakes and streams.  Groundwater occurs everywhere beneath the Earth’s surface, but is usually restricted to depth less than about 750 meters.  The volume of groundwater is equivalent to a 55-meter thick layer spread out over the entire surface of the Earth.

Groundwater scientists typically restrict the use of the term “groundwater” to underground water that can flow freely into a well, tunnel, spring, etc. This definition excludes underground water in the unsaturated zone. The unsaturated zone is the area between the land surface and the top of the groundwater system. The unsaturated zone is made up of earth materials and open spaces that contain some moisture but, for the most part, this zone is not saturated with water.

Groundwater derived from rainfall and infiltration within the normal hydrological cycle. This kind of water is called meteoric water. The name implies recent contact with the atmosphere.  Groundwater encountered at great depths in sedimentary rocks as a result of water having been trapped in marine sediments at the time of their deposition. This type of groundwater is referred to as connate waters. These waters are normally saline. It is accepted that connate water is derived mainly or entirely from entrapped sea water as original sea water has moved from its original place. Some trapped water may be brackish. Fossil water if fresh may be originated from the fact of climate change phenomenon, i.e., some areas used to have wet weather and the aquifers of that area were recharged and then the weather of that area becomes dry.







1.2  Groundwater and the Hydrologic Cycle
The subsurface occurrence of groundwater may be divided into zones of aeration and saturation. The zone of aeration consists of interstices occupied partially by water and partially by air. In the zone of saturation all interstices are filled with water, under hydrostatic pressure. One most of the land masses of the earth, a single zone of aeration overlies a single zone of saturation and extends upward to the ground surface, as shown in Fig. 1.2. In the zone of aeration (unsaturated zone), Vadose water occurs. This general zone may be further subdivided into the soil water zone, the intermediate Vadose zone (sub-soil zone), and capillary zone.

The saturated zone extends from the upper surface of saturation down to underlying impermeable rock. In the absence of overlying impermeable strata, the water table, or phreatic surface, forms the upper surface of the zone of saturation. This is defined as the surface of atmospheric pressure and appears as the level at which water stands in a well penetrating the aquifer. Actually, saturation extends slightly above the water table due to capillary attraction; however, water is held here at less than atmospheric pressure. Water occurring in the zone of saturation is commonly referred to simply as groundwater, but the term phreatic water is also employ.


1.3 Types and functions of geological formations
There are basically four types of geological formations (Aquifer, Aquitard, Aquiclude, and Aquifuge).
1.3.1    Aquifer
An aquifer is a ground-water reservoir composed of geologic units that are saturated with water and sufficiently permeable to yield water in a usable quantity to wells and springs. Sand and gravel deposits, sandstone, limestone, and fractured, crystalline rocks are examples of geological units that form aquifers. Aquifers provide two important functions: (1) they transmit groundwater from areas of recharge to areas of discharge, and (2) they provide a storage medium for useable quantities of groundwater. The amount of water depends upon its porosity. The size and degree of interconnection of those openings (permeability) determine the materials’ ability to transmit fluid.
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Fig. 1.1 A schematic cross-section showing the typical distribution of subsurface waters in a simple “unconfined” aquifer.


1.3.1.1   Types of Aquifers
1. Unconfined Aquifer
An unconfined aquifer is one in which a water table varies in undulating form and in slope, depending on areas of recharge and discharge, pumpage from wells, and permeability. Rises and falls in the water table correspond to changes in the volume of water in storage within an aquifer. A special case of an unconfined aquifer involves perched water bodies, as illustrated by Fig. 1.2. This occurs wherever a groundwater body is separated from the main groundwater by a relatively impermeable stratum of small areal extent and by the zone of aeration above the main body of groundwater. Clay lenses in sedimentary deposits often have shallow perched water bodies overlying them. Wells tapping these sources yield only temporary or small quantities of water.
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Fig.1.2. Schematic cross-sections of aquifer types.



2. Confined Aquifers
Confined aquifers, also known as artesian or pressure aquifers, occur where groundwater is confined under pressure greater than atmospheric by overlying relatively impermeable strata. In a well penetrating such an aquifer, the water level will rise above the bottom of the confining bed, as shown by the artesian and flowing wells of Fig. 1.2. Water enters a confined aquifer in an area where the confining bed rises to the surface; where the confining bed ends underground, the aquifer becomes unconfined. A region supplying water to a confined area is known as a recharge area; water may also enter by leakage through a confining bed. Rises and falls of water in wells penetrating confined aquifers result primarily from changes in pressure rather than changes in storage volumes. Hence, confined aquifers display only small changes in storage and serve primarily as conduits for conveying water from recharge areas to locations of natural or artificial discharge. 

3. Leaky Aquifer
Aquifers that are completely confined or unconfined occur less frequently than do leaky, or semi-confined, aquifers. These are a common feature in alluvial valleys, plains, or former lake basins where a permeable stratum is overlain or underlain by a semi-pervious aquitard or semi-confining layer. Pumping from a well in a leaky aquifer removes water in two ways: by horizontal flow within the aquifer and by vertical flow through the aquitard into the aquifer as shown in Fig.1.3.

1.3.2    Aquitard
An aquitard is a partly permeable geologic formation. It transmits water at such a slow rate that the yield is insufficient. Pumping by wells is not possible. For example, sand lenses in a clay formation will form an aquitard.

1.3.3    Aquiclude
An aquiclude is composed of rock or sediment that acts as a barrier to groundwater flow. Aquicludes are made up of low porosity and low permeability rock/sediment such as shale or clay. Aquicludes have normally good storage capacity but low transmitting capacity.

1.3.4    Aquifuge
An aquifuge is a geologic formation which doesn’t have interconnected pores. It is neither porous nor permeable. Thus, it can neither store water nor transmit it. Examples of aquifuge are rocks like basalt, granite, etc. without fissures.
[image: ]
Fig. 1.3 Different types of aquifers; A. Confined aquifer, B. Unconfined Aquifer, C. and D. Leaky aquifers, E. Multi-layered leaky aquifer system.






1.4 Groundwater movement
Groundwater flows from a higher to a lower head (or potential). Typical examples of the use of the groundwater head to identify the direction of groundwater flow are shown in Fig. 1.4. In this confined aquifer there are two piezometers which can be used to identify the direction of flow. In the upper diagram the flow is from left to right because the lower groundwater head is in the piezometer to the right; this is in the direction of the dip of the strata. For the lower diagram, the groundwater flow is to the left since the water level in the left hand piezometer is lower. Consequently the direction of the flow is up-dip in the aquifer. This flow could be caused by the presence of a pumped well or a spring to the left of the section.


[image: ]

Fig. 1.4 Groundwater head definition and determination of flow directions from groundwater head gradients.

1.5 Darcy’s Law, hydraulic conductivity and permeability
Henry Darcy carried out experiments which led to what we now call Darcy’s Law. Fig. 1.5 illustrates flow through a cylinder of aquifer; the groundwater velocity or Darcy velocity is defined as the discharge Q divided by the total cross-sectional area of the cylinder A.

[image: ]
Fig. 1.5 Darcy's velocity

                                                                                                                (1.1)

Note that the calculation of the groundwater velocity ignores the fact that the aquifer cross-section A contains both solid material and pores; consequently the groundwater velocity is an artificial velocity which has no direct physical meaning. Nevertheless, because of its convenience mathematically, the groundwater velocity is frequently used. An approximation to the actual seepage velocity vs can be obtained by dividing the Darcy velocity by the effective porosity N.

                                                                                                    (1.2)

A mathematical derivation of Darcy’s Law is presented in Fig. 1.6.

Consider an element with cross section δA and length δℓ, the element is inclined at an angle α to the horizontal; inflow and outflow only occur at the two ends.




[image: ]
Fig. 1.6 the elemental volume of water is inclined at an angle  to the horizontal.

Due to water pressures there are forces on the left hand face and the right hand face. There is a downwards force equal to ρg times the volume of water and there is also a frictional force F resisting the flow of water. Resolving in the direction of ℓ.

                                (1.3)

Where 
N is the effective porosity. Substituting sinα=dz/dl and rearranging.

                                                                                 (1.4)

Darcy's experiments showed that for low velocities, the resisting force is proportional to the velocity v; for mathematical convenience this is written as

                                                                                                      (1.5)

 
Where
 is the dynamic viscosity of the flowing fluid and  is intrinsic permeability of the porous material. Combining Eqs. (1.4) & (1.5).

                                                                                    (1.6)

Groundwater head	
                                                                                                      (1.7)

Differentiating Eq. (1.7) and substituting in Eq. (1.6)

                                                                    (1.8)
Where
The hydraulic conductivity is defined as

                                                                                                           (1.9)

The minus sign in Darcy’s Law emphasizes that water flows from a higher to a lower groundwater head. Strictly the phrase hydraulic conductivity should always be used but in groundwater hydraulics and soil mechanics the word permeability is often used as an alternative.

 
1.6 Measurement of permeability
There are two most common laboratory methods for determining the coefficient of permeability of soils.
1.6.1    Constant-head test
The constant-head test is suitable for more permeable granular materials. The basic laboratory test arrangement is shown in Fig. 1.7. The soil specimen is placed inside a cylindrical mold, and the constant head loss, h, of water flowing through the soil is maintained by adjusting the supply. The outflow water is collected in a measuring cylinder, and the duration of the collection period is noted. From Darcy’s law, the total quantity of flow Q in time t can be given by

                                                                                                    (1.10)
Where
 A is the area of cross section of the specimen and L is the length of the specimen. i=h/L
                                                                                                          (1.11)
[image: ]
Fig. 1.7 Constant-head laboratory permeability test


1.6.2   Falling-head test 
The falling-head permeability test is more suitable for fine-grained soils. Fig. 1.8 shows the general laboratory arrangement for the test. The soil specimen is placed inside a tube, and a standpipe is attached to the top of the specimen. Water from the standpipe flows through the specimen. The initial head difference  is recorded, and water is allowed to flow through the soil such that the final head difference at time 

                                                                  (1.12)

Where
h: head difference at any time t
A: area of specimen
a: area of standpipe
L: length of specimen
[image: ]
Fig. 1.8 Falling-head laboratory permeability test

From Eq. (1.12)

 

                                                                                    (1.13)

1.7 Factors affecting permeability
The coefficient of permeability depends on several factors
1. Shape and size of the soil particles.
2. Permeability increases with increase of void ratio.
3. Permeability increases with increase of degree of saturation.
4. Fire-grained soils with a flocculated structure have a higher coefficient of permeability than those with a dispersed structure



Some typical values of the coefficient of permeability are given in table 1.1
[image: ]

The coefficient of permeability of soils is generally expressed at a temperature of 20oC. At any other temperature T, the coefficient of permeability can be obtained as

                                                                                               (1.14)

[image: ]

Table 1.2 gives the values of  for a temperature T varying from 10 to 30oC

Table 1.2 values of 
	Temperature T, oC
	
	Temperature T, oC
	

	10 
	1.298 
	21 
	0.975 

	11 
	1.263 
	22 
	0.952 

	12 
	1.228 
	23 
	0.930 

	13 
	1.195 
	24 
	0.908 

	14 
	1.165 
	25 
	0.887 

	15 
	1.135 
	26 
	0.867 

	16 
	1.106 
	27 
	0.847 

	17 
	1.078 
	28 
	0.829 

	18 
	1.051 
	29 
	0.811 

	19 
	1.025 
	30 
	0.793 

	20 
	1.000 
	
	




1.8 Determination of permeability
Permeability can be determined by following formulas
1- [Hazen method]. The coefficient of permeability (K) depends on the properties of both porous medium and fluid. It can be expressed as,

                                                                                         (1.15)
Where,
C is the shape factor which depends upon the shape, particle size and packing of the porous media.
dm is the mean particle size (d50) (L, m)
ρ is the mass density ( M/L3, kg/m3)
g is the acceleration due to gravity (L/T2, m/s2)
μ is the viscosity (M/T.L, kg/s.m)

2- [Kozeny-Carmen].

                                                                            (1.16)

Where,
 n is porosity,
dm is representative of grain size (L, m).

3- [Shepherd] – Empirically derived

                                                                                    (1.17)

Where c and d exponent values vary with material description.

1.9 Transmissivity (T)
Transmissivity (T) is the discharge rate at which water is transmitted through a unit width of an aquifer under a unit hydraulic gradient. Thus,


                                                   (1.18)

Where, b is the saturated thickness of the aquifer. b is equal to the depth of a confined aquifer. It is equal to the average thickness of the saturated zone of an unconfined aquifer.

Transmissibility is usually expressed as m2/s, or m3/day/m or l/day/m.
Transmissibility of most formations lies between 1*104 -1*106 l/d/m, with an average value of 1*105 l/d/m.


1.10   Specific Storage (Ss)
Specific Storage (Ss) is the amount of water per unit volume of a saturated formation that is stored or expelled from storage owing to compressibility of the mineral skeleton and the pore water per unit change in head. This is also called the elastic storage coefficient. The concept can be applied to both aquifers and confining units.

The specific storage is given by the expression

                                                                                     (1.19)

Where
 is the density of the water (M/L3; Kg/m3)
g is the acceleration of gravity (L/T2; m/s2)
 is the compressibility of the aquifer skeleton (1/(M/LT2); m2/N)
n is the porosity
 is the compressibility of water (1/(M/LT2); m2/N)
The specific storage is usually expressed as cm-1 or m-1. For most aquifers, the specific storage is about 3*10-7 m-1 (see Table 1.3).




Table (1.3) Values of Specific Storage

[image: ]

In a confined aquifer, the head may decline-yet the potentiometric surface remains above the unit. Although water is released from storage, the aquifer remains saturated. Specific storage (Ss) of a confined aquifer is the storage coefficient per unit-saturated thickness of the aquifer. Thus,

                                                                                                             (1.20)

Where, b is the thickness of aquifer.

1.11    Storage Coefficient (S)
Storage coefficient (S) is the volume of water released from storage, or taken into storage, per unit of aquifer storage area per unit change in head.
The storage coefficient is also called Storativity. The storage coefficient is a dimensionless as it is the ratio of the volume of water released from original unit volume. The water-yielding capacity of an aquifer can be expressed in terms of its storage coefficient. In unconfined aquifers, Storativity is the same as the specific yield of the aquifer. In confined aquifer, Storativity is the result of compression of the aquifer and expansion of the confined water when the head (pressure) is reduced during pumping.



Storage coefficient normally varies directly with aquifer thickness

                                                                       (1.21)

Where, b is the saturated aquifer thickness in meters to be applied for estimating purposes.

The storage coefficient for unconfined aquifer corresponds to its specific yield.

In an unconfined unit, the level of saturation rises or falls with changes in the amount of water in storage. As the water level falls, water drains from the pore spaces. This storage or release is due to the specific yield (Sy) of the unit. Water is also stored or expelled depending on the specific storage of the unit. For an unconfined unit, the storativity is found by the formula

                                                                                                (1.22)

Where, h is the thickness of the saturated zone.
The value of y S is several orders of magnitude greater than s hS for an unconfined aquifer, and the storativity is usually taken to be equal to the specific yield. For a fine-grained unit, the specific yield may be very small, approaching the same order of magnitude as  . Storativity of unconfined aquifers ranges from 0.02 to 0.30.

The volume of the water drained from an aquifer as the head is lowered may be found from the formula

                                                                                                (1.23)

Where
 is the volume of the water drained (L3; m3)
 is the storativity (dimensionless)
 is the surface area overlying the drained aquifer (L2; m2)
 is the average decline in head (L; m)





All the water stored in a water bearing stratum cannot be drained out by gravity or by pumping, because a portion of the water is rigidly held in the voids of the aquifer by molecular and surface tension forces (see Table 1.4).

[image: ]

1.12 Specific Retention (Sr)
Specific retention (Sr) is the ratio of the volume of water that cannot be drained out to the total volume of the saturated aquifer. Since the specific yield represents the volume of water that a rock will yield by gravity drainage, hence the specific retention is the remainder. The sum of the two equals porosity.


                                                                                                  (1.24)

The specific yield and specific retention depend upon the shape and size of particle, distribution of pores (voids), and compaction of the formation. The specific retention increases with decreasing grain size.  It should be noted that it is not necessary that soil with high porosity will have high specific yield because that soil may have low permeability and the water may not easily drain out. For example, clay has a high porosity but low specific yield and its permeability is low.



 




Chapter Two

Groundwater Flow






2.1 Introduction
Gravity is the dominant driving force in ground-water movement. Under natural conditions, groundwater moves "downhill" until, in the course of its movement, it reaches the land surface at a spring or through a seep along the side or bottom of a stream channel or an estuary.

The potentiometric surface of confined aquifers, like the water table, also slopes from recharge areas to discharge areas.


2.2 Equation for one-dimensional flow
Using Darcy’s Law and the principle of continuity of flow, a differential equation is derived which can be applied to many problems of one-dimensional groundwater flow. Consider an element of aquifer of length dx shown in Fig. 2.1 which extends upwards from the impermeable base to the water table, a vertical distance m. The vertical recharge at the water table equals q. Continuity of flow can be written as:


 

[image: ]

Fig. 2.1 One-dimensional groundwater flow

In mathematical terms (note that the cross-sectional area perpendicular to vx is m ×1.0 since the width of the aquifer into the paper is 1.0),

 

                                                                                                  (2.1)


From Darcy’s Law

                                                                                                   (2.2)

Combining Eqs (2.1) and (2.2).

                                                                                 (2.3)

In this equation the recharge on the right-hand side is written as q(x), signifying that the recharge may be a function of x.


2.3 Aquifer with constant saturated depth and uniform recharge
An aquifer with an impermeable base and a constant transmissivity T (where T = Kx × m) is in contact with an impermeable stratum at the left-hand side, x = 0. On the right-hand side, x = L, the aquifer is in contact with a large lake at an elevation H above datum. The recharge, which is written as q (units L/T), is constant and therefore not a function of x. As with the derivation of the governing equation (Eq. (2.3)), a unit width (into the paper) of the aquifer is considered.

Since the transmissivity, which is the product of the saturated thickness and the hydraulic conductivity, is constant as shown in Fig.2.2, Eq. (2.3) can be written as

                                                                                                           (2.4)

Integrating once,

                                                                                                 (2.5)

Where,  is a constant of integration. Integrating again,

                                                                                      (2.6)
Where, B is the second constant of integration. There are two constants of integration which can be determined from the two boundary conditions.

[image: ]
Fig. 2.2 One-dimensional flow in an aquifer with constant saturated depth and uniform recharge

1. At x = 0 there is no lateral inflow thus dh/dx = 0, hence from Eq. (2.5)
 
2. At x = L, h = H and also substituting A = 0, Eq. (2.6) becomes

 

When the values of the two constants of integration are substituted back in Eq. (2.6), the resultant equation for the groundwater head is


                                                                                            (2.7)

The flow through the aquifer can also be calculated from the equation

                                                                                            (2.8)

In Fig. 2.2b, the distribution of groundwater head above the lake level is plotted as a fraction of qL2/2T. The maximum groundwater head occurs at x = 0, the left-hand side. Note also that the slope of the groundwater head on the left-hand side is zero, thereby satisfying the condition of zero inflow. Fig. 2.2c shows the variation of flow in the aquifer with x; there is a linear increase from zero at the no-flow boundary to qL per unit width of the aquifer at the lake.


2.4 Aquifer with constant saturated depth and linear variation in recharge
In Figure 2.3a, the recharge varies linearly from zero at the no-flow boundary to qm at the lake. This can be expressed mathematically by defining the value of the recharge at any location x by

                                                                                               (2.9)

Therefore the differential equation becomes

                                                                                                 (2.10)

Integrating this equation twice and substituting the same boundary conditions as for the constant recharge example, the expression for the drawdown becomes  

                                                                                       (2.11)

Note that, because the right-hand side of the governing equation is a function of x, both L and x are raised to the third power in Eq. (2.11). The equation for the horizontal flow in the aquifer is obtained by differentiating Eq. (2.11) to find
                                                                         (2.12)

[image: ]

Fig. 2.3 One-dimensional flow in an aquifer with constant saturated depth and linear variation in recharge


2.5 Confined aquifer with varying thickness  
If the saturated thickness m is a function of x it is no longer legitimate to work in terms of a constant transmissivity T which, in Eq. (2.4), is transferred to the right-hand side of the equation. Instead it is necessary to use the original equation

                                                                                 (2.3)


There are few mathematical expressions for a variation in saturated thickness for which analytical solutions can be obtained by integration. One possible variation in thickness, illustrated in Fig. 2.4, is

[image: ]

Fig. 2.4 One-dimensional flow in confined aquifer with varying depth

                                                                                     (2.13)

The value of  must be selected to give a positive value of the aquifer thickness at the right hand side. With groundwater heads H1 and H2 at the left- and right hand sides, the head at any location x is given by the expression,

                                                                      (2.14)

With the flow through the aquifer equal to

                                                             (2.15)







2.6 Time-variant one-dimensional flow
Analytical solutions can be obtained for time-variant flow in a confined aquifer. A representative example is presented in Fig. 2.5; there is a sudden change in head at the left-hand boundary. Since the thickness and the hydraulic conductivity of the aquifer are constant with flow only occurring in the x direction. 

                                                                                     (2.16)

[image: ]
Fig. 2.5 Example of one-dimensional time-variant flow in a confined aquifer

The initial condition is that the groundwater head is zero everywhere in the aquifer, thus h = 0 when t = 0 for all x. The boundary conditions include a sudden rise in head at the left-hand boundary with no flow crossing the right hand boundary, thus for t > 0 at x = 0, h = H and for t ≥ 0 at x = L, dh/dx = 0. A mathematical expression satisfying the differential equation and initial and boundary conditions is


 (2.17)
With a flow at the left-hand boundary of

                                       (2.18)



Fig. 2.5b presents the changes in groundwater heads with time for a specific problem. The aquifer is confined with SC = 0.0004 and T = 1000m2/d; groundwater head distributions are plotted for times varying from 0.05 to 10 days. For this confined aquifer more than 90% of the rise in groundwater heads is completed within 10 days.

































Chapter Three

 Radial Flow











3.1 Radial flow in a confined aquifer
First an equation for steady radial flow to a pumped well in a confined aquifer is derived from first principles. Fig. 3.1a shows a pumped well with discharge Q which fully penetrates a confined aquifer of constant saturated thickness m and uniform radial hydraulic conductivity Kr. In the plan view (Fig. 3.1b); a cylindrical element is drawn at a radial distance r with width dr. The well discharge Q must cross this cylindrical element. From Darcy’s Law:


Q = cross-sectional area × hydraulic conductivity ×head gradient

                                                               (3.1)

Rearranging 

 

[image: ]
Fig. 3.1 Radial flow to a pumped well in a confined aquifer
Integrating

 

If the groundwater head at radius R is H, Fig. 3.1a, the constant of integration A can be evaluated as

 

Hence,

                                    (3.2)

Rather than working in terms of h, the groundwater head above a datum, it is often more convenient to work in terms of the drawdown s below the rest water level

s=H-h                                                                                                                (3.3)

                                                                                      (3.4)

For example, the equation can be used to determine the drawdown sw in a pumped well of radius rw when the drawdown at radius r1 is s1:

                                                                                   (3.5)



3.2 Radial flow in an unconfined aquifer with recharge
Assuming that the saturated depth remains approximately uniform so that a constant transmissivity can be used, the analysis of steady-state unconfined flow with uniform recharge (see Fig. 3.2).



Figure 3.3 shows a well fully penetrating a confined aquifer of thickness b. Let us consider flow through an annular cylinder of soil with radius r and thickness d, at a radial distance of r from the center of the well.


[image: ]
Fig. 3.2 Radial flow to a pumped well in an unconfined aquifer with recharge assuming constant saturated thickness

[image: ]
Figure 3.3
From the principle of continuity equation of flow, the difference of the rate of inflow and the rate of outflow from the annular cylinder is equal to the rate of change of volume of water within the annular space. Thus
[image: ]
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The above equation is the basic equation of unsteady flow towards the well. In this equation, h is head, r is radial distance from the well, S is storage coefficient, T is transmissivity, and t is the time since the beginning of pumping.

                                                                                           (3.6)


First integration and first boundary condition

 
or

                                                                                                 (3.7)

At the outer boundary, r=R, no flow crosses hence

 

Therefore, Eq. (3.7) becomes

 

Second integration and second boundary condition

                                                                            (3.8)

at r=R, h=H, sub. In the above equation

 

Thus

                                                                     (3.9)

Eq. (3.9) is converted to drawdown, also include the substitution that

  

                                                                                (3.10)


3.3 Radial flow in an unconfined aquifer with varying saturated depth
Approximate solutions for radial flow in an unconfined aquifer can be obtained using the Dupuit approximation. For the situation illustrated in Fig. 3.4, the pumping rate from the unconfined aquifer

                                                                                    (3.11)

Rearranging 

             

Integrating

 

Boundary conditions

At r=R, h=H, therefore

 

                                                                                   (3.12)

At r=rw , h=hw
 
                                                                                 (3.13)


[image: ]
Fig. 3.4 Radial flow to a pumped well in an unconfined aquifer with variable saturated thickness

This equation can be rearranged as

                                                                                             (3.14)


3.4 Confined Aquifers – The Theis Method
When a well penetrating an extensive confined aquifer is pumped at a constant rate, the influence of the discharge extends outward with time. The rate of decline of head times the storage coefficient summed over the area of influence equals the discharge. Because the water must come from a reduction of storage within the aquifer, the head will continue to decline as long as the aquifer is effectively infinite; there for, unsteady, or transient or non-equilibrium flow exists. The rate of decline, however, decreases continuously as the area of influence expands.
Theis (1935) solved the non-equilibrium flow equations in radial coordinates based on the analogy between groundwater flow and heat condition. By assuming that the well is replaced by a mathematical sink of constant strength and imposing the boundary conditions h = h0 for t = 0, and


                                                                                        (3.15)

For this method the drawdown at a piezometer distance, r from the abstraction well is monitored over time.
Theis expressed the transient drawdown, s, as

                                                                                               (3.16)

Where W(u) is the well function and u is given by

                                                                                                           (3.17)

Taking logarithms and rearranging these equations gives

                                                               (3.18)

                                                                        (3.19)

Assumptions

1 Prior to pumping, the potentiometric surface is approximately          horizontal (No slope),
2 The aquifer is confined and has an "apparent" infinite extent,
3 The aquifer is homogeneous, isotropic, of uniform thickness over the    area influenced by pumping,
4 The well is pumped at a constant rate,
5 The well is fully penetrating,
6 Water removed from storage is discharged instantaneously with decline in head,
7 The well diameter is small so that well storage is negligible.




The Data required for the Theis solution are

1 Drawdown vs. time data at an observation well,
2 Distance from the pumping well to the observation well,
3 Pumping rate of the well.


The procedure for finding parameters by Theis method

1 On log-log paper, plot a graph of values of sw against t measured during the pumping test, 
2 Theoretical curve W(u) versus 1/u is plotted on a log-log paper. This can be done using tabulated values of the well function (see Table 3.1). ready printed type curves are also available (see Fig. 3.5),
3 The field measurements are similarly plotted on a log-log plot with (t) along the x-axis and (sw) along the y-axis (see Fig. 3.6),
4 Keeping the axes correctly aligned, superimposed the type curve on the plot of the data (i.e. The data analysis is done by matching the observed data to the type curve),
5 Select any convenient point on the graph paper (a match point) and read off the coordinates of the point on both sets of axes. This gives coordinates ( 1/u, W(u)) and (t, sw) (see Fig. 3.7),
6  Use the previous equations to determine T and S.
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Fig. 3.5 The non-equilibrium reverse type curve (Theis curve) for a fully confined aquifer
[image: ]

Fig. 3.6 Field data plot on logarithmic paper for Theis curve-marching technique

[image: ]

Fig. 3.7 Match of field data plot to Theis Type curve




Table 3.1 Values of the function W(u) for various values of u
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Example 3.1: Steady State Flow

A 200 mm diameter well which fully penetrating a confined aquifer of thickness 25 m is pumped at a constant rate of 2000 m3/day. The steady state drawdown in the well is 8 m and the drawdown in a piezometer 100 m from the well is 1.4 m.

1. Calculate the transmissivity of the aquifer, the hydraulic. conductivity of the aquifer material and the radius of influence of the well.
2. Repeat the calculation for an unconfined aquifer with saturated thickness 25 m.

Answer 3.1

1. In a confined aquifer

)

 



 

 

 

 

2. In an unconfined aquifer

 

Where h1 & h2 are measured from the base of the aquifer

 

 

 

K=16.4 m/day

T=K.h=16.4×25=410 m2/day.

At radius of influence (R), h=25

 

R=574m.



Example 3.2 Groundwater Wells and Springs

Given Data

[image: ]

Required

How long will it be before the spring ceases (stops) to flow if the pumping well is operating continuously at Q = 3888 m3/day?


[image: ]

Answer 3.2

From the given data, it can be shown that the initial piezometric level is only 1 m above the location of the spring; therefore, the water level needs to drop only one meter in order to cause the spring to cease the flowing.


Hence, we need to find t for s = 1 m.


 

 
 
 

From interpolation of values in the table


 

u=0.485
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3.5 Confined Aquifers – Cooper-Jacob Method (Time-Drawdown)
The analysis presented here is of a pumping test in which drawdown at a piezometer distance, r from the abstraction well is monitored over time. This is also based upon the Theis analysis

             (3.20)

From the definition of u it can be seen that u decreases as the time of pumping increases and as the distance of the piezometer from the well decreases. So, for piezometers close to the pumping well after sufficiently long pumping times, the terms beyond lnu become negligible. Hence for small values of u, the drawdown can be approximated by:

                                                                      (3.21)

Changing to logarithms base 10 and rearranging produces

                                                                                        (3.22)

And this is a straight line equation

 

 
[image: ]

It follows that a plot of s against log t should be a straight line (see Fig. 3.8). Extending this line to where it crosses that t axis (i.e. where s is zero and t=to) gives

[image: ]

Fig.3.8 Jacob method of solution of pumping-test data for a fully confined aquifer. Drawdown is plotted as a function of time on semi-logarithmic paper

                                                                                                   (3.23)

The gradient of the straight line (i.e. the increase per log cycle, Δs) is equal to

                                                                                                       (3.24)

At first T is calculated (eq. 3.24) then S can be calculated from eq. 3.23 by using T and 

3.6 Confined Aquifers – Cooper-Jacob Method (Distance-Drawdown)
If simultaneous observations are made of drawdown in three or more observation wells, the observation well distance is plotted along the logarithmic x-axes, and drawdown is plotted along the linear y-axes.

For the Distance-Drawdown method, transmissivity and storativity are calculated as follows:


                                                 (3.25)

                                                                       (3.26)

                                                                              (3.27)

Where,
Δs is the change in drawdown over one logarithmic cycle, ro is the distance defined by the intercept of the straight-line fit of the data and zero-drawdown axis, and t is the time to which the set of drawdown data correspond (see Fig. 3.9). 
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Fig. 3.9 Straight line plot of Cooper-Jacob method (Disatnce-Drowdown, Confined) 


3.7 Leaky (Semi) Confined Aquifers – Hantush-Jacob Method and Walton Graphical Method
Leaky aquifer bounded to and bottom by less transmissive horizons, at least one of which allows some significant vertical water “leakage” into the aquifer.

Unsteady radial flow for leaky aquifer can be represented in the following equation:


                                                                          (3.28)

Where, 
r           is the radial distance from a pumping well (m)
e          is the rate of vertical leakage (m/day)
When a leaky aquifer, as shown in Fig. 3.10, is pumped, water is withdrawn both from the aquifer and from the saturated portion of the overlying aquitard, or semipervious layer. Lowering the piezometric head in the aquifer by pumping creates a hydraulic gradient within the aquitard; consequently, groundwater migrates vertically downward into the aquifer. The quantity of water moving downward is proportional to the difference between the water table and the piezometric head.

Steady state flow is possible to a well in a leaky aquifer because of the recharge through the semipervious layer. The equilibrium will be established when the discharge rate of the pump equals the recharge rate of vertical flow into the aquifer, assuming the water table remains constant. Solutions for this special steady state situation are available, but a more general analysis for unsteady flow follows.

[image: ]
Fig. 3.10 Well pumping from a leaky aquifer


Normal assumption leakage rate into aquifer

 

Initially, pumped water from elastic storage in aquifer with increasing time, forces more water to come from induced “leakage” through aquitard. Water contributed from aquitard comes from,
1) Storage in aquitard,
2) Over/underlying aquifer.

The Hantush and Jacob solution has the following assumptions:

1. The aquifer is leaky and has an "apparent" infinite extent,
2. The aquifer and the confining layer are homogeneous, isotropic, and of uniform thickness, over the area influenced by pumping,
3. The potentiometric surface was horizontal prior to pumping,
4. The well is pumped at a constant rate,
5. The well is fully penetrating,
6. Water removed from storage is discharged instantaneously with decline in head,
7. The well diameter is small so that well storage is negligible,
8. Leakage through the aquitard layer is vertical.

The Hantush and Jacob (1955) solution for leaky aquifer presents the following equations (see Fig. 3.11):

                                                    (3.29)

Where,

                                                                                    (3.30)

Where,

 : is the well function for leaky confined aquifer

 : is the leakage factor given as   
Where,
: is thickness of the aquitard (m)
: is hydraulic conductivity of the aquitard (m/day)

Walton Graphical Solution
[image: ][image: ]

[image: ]
Fig. 3.11 Log-log plot for Hantush method


[image: ]                                            (3.31)
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Example 3.3 Theis Method and Cooper-Jacob Method of Pumping Test

A well penetrating a confined aquifer is pumped at a uniform rate of 2500 m3/day. Drawdowns during the pumping period are measured in an observation well 60 m away; observation of t and s are listed in Table 3.2.

1. Determine the transmissivity and storativity using Theis method.
2. Determine the transmissivity and storativity using Cooper-Jacob method.





Table 3.2 Pumping Test Data

[image: ]

Answer 3.3
(1)
First of all, values of r2/t in m2/min are computed see the following table. Then, Values of s and r2/t are plotted on logarithmic paper. Values of W (u) and u from Table 3.1 are plotted on another sheet of logarithmic paper and a curve is drawn through the points. The two sheets are superposed and shifted with coordinate axes parallel until the observation points coincide with the curve, as shown in Fig. 3.12. A convenient match point is selected with W (u) =1.00 and u=1x10-2, so that s= 0.18 m and r2/t=150 m2/min = 216,000 m2/day.
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Figure 3.12 Theis method of superposition for solution of the nonequilibrium equation

[image: ]

(2)
From the pumping test data of Table 3.2, s and t are plotted on a semi-logarithmic paper as shown in Fig. 3.13. A straight line is fitted through the points, and Δs=0.40m and t0= 0.39 min = 2.70 x 10-4 day are read.

[image: ]

Fig. 3.13 Cooper-Jacob method for solution of the nonequilibrium equation
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3.8 Partial Penetration of an Aquifer by a Well
[image: ]
3.9 Interference Among wells
[image: ]
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3.10 Free surface curve
[image: ]

3.11 Pumping Test
Pumping Test is the examination of aquifer response, under controlled conditions, to the abstraction of water. Pumping test can be well test (determine well yield and well efficiency), aquifer test (determine aquifer parameters and examine water chemistry).

The objectives of the pumping test are:
1. Determine well yield,
2. Determine well efficiency,
3. Determine aquifer parameters,
4. Examine water chemistry.

Well yield: is a measure how much water can be withdrawn from the well over a period of time and measured in m3/hr or m3/day.
Specific capacity: is referring to whether the well will provide an adequate water supply. Specific capacity is calculated by dividing pumping rate over drawdown (Q/S).
Static water level: is the level of water in the well when no water is being taken out.
Dynamic Water level: is the level when water is being drawn from the well. The cone of depression occurs during pumping when water flows from all directions toward the pump.
Drawdown: the amount of water level decline in a well due to pumping. Usually measured relative to static (non-pumping) conditions.


3.12 Principles of Pumping Test
The principle of a pumping test involves applying a stress to an aquifer by extracting groundwater from a pumping well and measuring the aquifer response to that stress by monitoring drawdown as a function of time (see Fig. 3.14).

These measurements are then incorporated into an appropriate well-flow equation to calculate the hydraulic parameters of the aquifer.
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Fig. 3.14 Pumping well with observation wells in unconfined aquifer

3.13 The Importance of Pumping Tests
Pumping tests are carried out to determine:
1. How much groundwater can be extracted from a well based on long-term yield, and well efficiency?
2. The hydraulic properties of an aquifer or aquifers.
3. Spatial effects of pumping on the aquifer.
4. Determine the suitable depth of pump.
5. Information on water quality and its variability with time.

3.14 Design Considerations
There are several things should be considered before starting a pumping test:
1. Literature review for any previous reports, tests and documents that may include data or information regarding geologic and hydrogeologic systems or any conducted test for the proposed area.
2. Site reconnaissance to identify wells status and geologic features.
3. Pumping tests should be carried out within the range of proposed or designed rate (for new wells, it should be based on the results of Step Drawdown Test).
4. Avoid influences such as the pumping of nearby wells shortly before the test.
5. Determine the nearby wells that will be used during the test if it’s likely they will be affected, this well depends on Radius of Influence. The following equation can be used to determine the radius of influence (R0):

                                                                         (3.32)

[image: ]

6. Pumping tests should be carried out with open-end discharge pipe in order to avoid back flow phenomena (i.e. Pp =Patm).
7.  Make sure that the water discharged during the test does not interfere with shallow aquifer tests.
8. Measure groundwater levels in both the pumping test well and nearby wells before 24 hours of start pumping.
9. Determine the reference point of water level measurement in the well.
10. Determine number, location and depth of observation wells (if any).

3.15 Methods of Measurement
The equipment required in measurement is:
Flow Meter: flow meter is recommended for most moderates to high flow-rate applications. Others means of gauging flow such as containers could be used for low- flow-rate applications (see Fig. 3.15).


[image: ]

Fig. 3.15 Measuring pumping rate by flow meter

Water level Indicator: To be used for measuring static and dynamic water levels such as M-Scope or Data Logger. Water level data should be recorded on aquifer test data sheet (see Fig. 3.16).
[image: ]

Fig. 3.16 Measuring water level by M-scope



















Chapter Four Two-dimensional Vertical Section



4.1 Two-Dimensional Vertical Section (Profile Model)
The essential flow processes of certain groundwater problems can be represented by considering a vertical section in the x-z plane, provided that the flow in the y direction is sufficiently small to be neglected. The time variant form of the governing differential equation in the vertical plane is the same as that for three dimension flow (Eq. (4.1)), but with the flow in the y direction eliminated:


                                                                  (4.1)

4.1.1 Steady-state conditions, rectangular dam
For a steady-state analysis of flow in a rectangular dam (see Fig. 4.1), it is necessary to identify the differential equation and five boundary conditions. The steps in specifying the problem and preparing a mathematical description are as follows.

1. Define the co-ordinate axes: the co-ordinate axes are x and z; it is preferable to measure z from the base of the dam.
2. Specify the differential equation describing flow within the dam: flow through the dam is steady state and occurs in the x-z plane; the flow is described by Eq. (4.1) but with the time-variant term on the right-hand side set to zero.
3. Boundary AB: this is the upstream face; the groundwater head is constant on this face since at A the pressure is H1 but z = 0 while at B the pressure is zero (atmospheric) but z = H1, therefore h = H1 for the whole boundary.
4. Boundary DE: this is the downstream face where h = H2.
5. Boundary AE: on this impermeable base there is no flow in the z direction, therefore from Darcy’s Law ∂h/∂z = 0.
6. Boundary CD: on the vertical face of the dam above the downstream water level, water seeps out into the atmosphere. Since the pressure is atmospheric,

 



7. Boundary BC: this boundary, which connects the top of the upstream face B to an unknown location C on the seepage face, is the water table (often called the free surface). It is the upper boundary of the saturated flow regime. To appreciate conditions on this boundary, consider a particle of water entering the aquifer at B and moving to the right.

[image: ]
Fig. 4.1 Mathematical specification of flow through a rectangular dam in the x-z plane

This simplified description of the flow of a particle along the water table is presented to give insights into the conditions on this boundary. Since the location of the water table boundary is unknown, there will be two boundary conditions; for other boundaries the position is known, hence only one boundary condition is required. The two conditions are:

1. the pressure everywhere is atmospheric hence h = z,
2. no flow crosses this boundary hence ∂h/∂n = 0 where n is the direction normal to the boundary.






Results obtained from a numerical solution for steady flow through a rectangular dam are included in Fig. 4.2 and 4.3. The dam is square with an upstream water level 10m above the impermeable base and a downstream water level of 2.0m. The location of the water table and equipotential lines within the dam are drawn in Fig. 4.2. Further insights into the flow through the dam are provided by the flow direction arrows of Fig. 4.3.

[image: ] 
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Fig. (4.2)	Fig. (4.3)

4.2 Regional Groundwater  Flow
The differential equation for three-dimensional time variant groundwater flow

                                          (4.2)

In which the groundwater head is a function of the three co-ordinate directions and time, h(x, y, z, t). The equation can be described in words with reference to the unit cube of Fig. 4.4a. The first term of Eq. (4.2) describes the change in flux (velocity multiplied by unit cross-sectional area) in the x direction as water passes from the left-hand to the right-hand side of the cube. In Figure 2.26a this is described as difference in flux, x direction (in the following discussion a shorthand is used of flux diff in x). There are also flux differences in the y and z directions. A further component of the flow balance is water taken into storage as the pressure changes. The pressure change component equals the change in groundwater head multiplied by the specific storage (). 

flux diff in x + flux diff in y + flux diff in z + specific storage × head change with time = 0

Fig. 4.4b refers to an element of the aquifer of unit plan area but extending over the full saturated depth. Therefore the difference in fluxes in the x and y directions are multiplied by the saturated depth to give the difference in flows (flow diff in x etc.); the hydraulic conductivities Kx and Ky are replaced by the transmissivities Tx and Ty. Also, because the full depth of the section is considered, the specific storage is replaced by the confined storage coefficient. Therefore the equivalent equation written in words for the full saturated depth is:


flow diff in x + flow diff in y + flux diff in z + confined storage × head change with time = 0
 
Note that the term flux diff in z is retained since the cross-sectional area in the z direction is the same in Fig. 4.4a and b.

Assuming that the base of the aquifer is impermeable, the velocity and hence the flux at the base is zero. At the top of the element there are two physical processes which provide the vertical flux, the recharge -q and the flux component due to the specific yield SY ∂h/∂t. Therefore flux diff in z (vertically upwards is positive) is

 

Consequently the flow balance for the full depth of the aquifer (Fig. 4.4b), becomes

                                            (4.3)
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Fig. 4.4 Diagram illustrating how vertical flow components are implicitly contained in the two-dimensional regional groundwater flow formulation

· The volume of water drained from a unit plan area of aquifer for a unit fall in head is SY
· The volume of water released from a unit volume of aquifer for a unit fall in head is SS
· The specific storage multiplied by the saturated thickness m,

 

· The volume of water released per unit plan area of aquifer for a unit fall in head is SC 

Storage properties are summarized in table 4.1. Note that the specific storage has dimensions L-1 all the other storage coefficients are dimensionless. Typical ranges for these three storage coefficients are

[image: ]
Table 4.1 Summary of storage properties
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4.3 Illustrative Numerical Examples of One-Dimensional Flow
An example is presented in Fig. 4.5 to demonstrate how vertical flows can be deduced for one-dimensional steady-state flow in which the groundwater heads are known on a 1.0 km grid. Details of the aquifer system are given in Figure 4.5a. 

1. the aquifer has a slight slope to the right, elevations of the base of the aquifer (45, 44, 43 and 42 m) are given at 1 km intervals,
2. the lower 10m of the aquifer has a hydraulic conductivity of 120 m/d (shown shaded in Fig. 4.5), the upper part has a maximum saturated thickness of 20.1 m with a hydraulic conductivity of 15 m/d,
3. the recharge rate to the aquifer is 0.598mm/d,
4. groundwater heads (74.9, 74.0, 72.7 and 72.1 m) are known at the 1 km spacing.

Flows are calculated for a unit width into the paper using Darcy’s Law, first for the lower stratum and subsequently for the upper stratum. The flow from A to B in the lower stratum,

FlowAB = K × depth × head gradient = 120 × 10.0 × (0.9/1000) = 1.080m3/d/m

[image: ]

Fig. 4.5 Numerical example of estimation of horizontal and vertical flows from a one-dimensional solution: (a) details of the problem, (b) identification of horizontal and vertical flow components

Also FlowBC = 1.560m3/d/m, FlowCD = 0.720m3/d/m.

The flow in the lower stratum between B and C is 0.48m3/d/m higher than the flow from A to B; this change in flow can only occur if there is a vertical inflow to the lower layer of 0.48m3/d/m. This inflow is shown in the figure as a vertical arrow but in practice the vertical flow occurs between the mid-point of AB and the mid-point of BC.

In calculating the flows in the upper stratum account must be taken of the varying saturated depth.

FlowAB = K × depth × head gradient = 15 × [(19.9 + 20.0)/2] × (0.9/1000) = 0.269m3/d/m.

Also FlowBC = 0.387m3/d/m, FlowCD = 0.179m3/d/m, Thus FlowBC - FlowAB = 0.118m3/d/m and FlowCD - FlowBC = -0.208m3/d/m
Considering the total inflow to the aquifer system between the mid-point of AB and the mid-point of BC, this must equal the differences FlowBC - FlowAB in both the lower and upper strata:

Total inflow = 0.480 + 0.188 = 0.598m3/d/m which, when distributed over a length of 1.0km by 1.0m, is equivalent to the recharge of 0.598mm/d.

These components are shown in Fig. 4.5b. For the inflow between the mid-point of BC and the mid-point of CD, account must be taken of the flow from the aquifer to the river at C. The presence of the river can be identified from the decreased gradient of the length CD. The calculation takes a different form:

River flow = FlowBC - FlowCD in both the lower and upper strata + recharge so river flow = 0.840 + 0.208 + 0.598 = 1.646m3/d/m;


4.4 Numerical Analysis
Numerical analysis is a powerful tool when solving groundwater problems
4.4.1   One-dimensional flow in x-direction
The finite difference equations for one-dimensional flow with recharge are derived using two approaches. First, the equations are deduced using a lumping argument. Fig. 4.6 is a vertical cross-section of an aquifer; it is divided into a mesh with a spacing of ∆x (an unequal spacing can be included without difficulty). The unknown heads at three nodes are h-1, h0 and h1. The product of the saturated thickness and hydraulic conductivity is defined at the mid-point between pairs of nodes. Between nodes -1 and 0 the product is written as (mK)-1,0, between nodes 0 and 1 the appropriate value is (mK)0,1.




[image: ]
Fig. 4.6 Lumping approach for finite difference equation in one-dimensional steady state flow with recharge

From Darcy’s Law the flow from node -1 to node 0 can be written as

                                                                          (4.4)
Also
                                                                                 (4.5)

From continuity, with the recharge intensity at node 0 written as q0, 

                                                    
                                                                                     (4.6)

Substituting Eqs (4.4) and (4.5) in Eq. (4. 6) and rearranging

                                                        (4.7)

An alternative derivation starts from the differential equation

                                                                                  (2.3)


The curve of Fig. 4.7 represents the variation of groundwater head with the x coordinate for part of the aquifer. Three nodal points, a distance ∆x apart, are defined as -1, 0 and 1; in addition the mid-points between these nodes are defined as P and Q. Using the simplest finite difference expression, the gradients of the groundwater heads at locations P and Q can be written as

                                                      (4.8)

In addition, using the same finite difference approximation, Eq. (2.3) becomes

                         (4.9)

[image: ]
Fig.  4.7 Derivation of finite difference equations. 

Note: that the products of the saturated thickness and horizontal hydraulic conductivity are defined at the mid-points between nodes









4.4.2 Example of finite difference solution of one dimensional flow with varying saturated depth and varying recharge
Fig. 4.8 is introduced to illustrate the versatility of the finite difference approach. Details of the problem are shown in Figure 4.8a, the aquifer is 4.0 km in length, with no inflow or outflow on the left-hand boundary but with a large deep lake having a water surface elevation H to the right. The thickness decreases linearly from 20.0m adjacent to the lake to 10.0m at the no-flow boundary while the recharge increases linearly from 0.5mm/d at the lake to 1.0mm/d at the no-flow boundary. The horizontal hydraulic conductivity is 30.0 m/d everywhere.

[image: ]
Fig. 4.8 Finite difference solution of one dimensional flow with varying saturated depth and varying recharge: (a) description of the problem, (b) values of (Km) between nodal points, (c) values of recharge at nodal points, (d) calculated groundwater heads.




                    (4.10)

The aquifer is divided into four mesh intervals, consequently ∆x = 1000 m; there are four unknown heads hA, hB, hC and hD. Since the product (Km) is required between nodes, the values are presented in Fig. 4.8b, and Fig. 4.8c lists values of the recharge at nodal points.

When Eq. (4.10) is written with h0 equal in turn hA, hB, hC and hD, the following four equations are derived:

 
 
 
 
 
For the fourth equation when h0 = hD there is no node to the left of hD. However, a no-flow boundary condition applies at D; this can be represented by introducing a fictitious node to the left of D such that the groundwater head h-1 is equal to hC.

There are four equations with four unknowns. These equations lead to a tridiagonal matrix; the four unknown heads are
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4.4.3 Finite difference solution of radial flow
The governing equation for steady-state radial flow through an aquifer in terms of drawdown

                                                                                     (4.11)

It is helpful to use a logarithmic variable in the radial direction (see Fig. 4.9b),

                                                                                                         (4.12)
Eq. (4.11) can be rewritten as

                                                                                     (4.13)

[image: ]

Fig. 4.9 Finite difference mesh arrangements: (a) radial flow in plan, (b) logarithmic mesh spacing for radial flow, (c) vertical section in x-z plane




This equation can be expressed in finite difference form with the radial co-ordinate divided into a mesh which increases logarithmically so that the increment ∆a is constant. The differential equation can be written in backward difference finite difference form.

                                         (4.14)

Where 
 refers to the hydraulic conductivity between nodes n - 1 and n,  refers to the hydraulic conductivity between nodes n and n + 1

This leads to a set of simultaneous equations which can be solved using a Gaussian elimination technique


4.4.4 Finite difference solution of vertical section
The differential equation in the x-z plane
                                                                      (4.15)

This equation is written in finite difference form for the two-dimensional mesh of Fig. 4.9c. Note that nodes are numbered in the x and z directions by I and j, with Kx,i,j and Kz,i,j to the right and below node i, j

                                  (4.16)






Chapter Five

 Modeling 
of Groundwater


5.1 Introduction
A groundwater modeling is considered as one of the main tools of the resource potential and prediction assessment of future impact under different circumstances and stresses. Groundwater models are used to calculate the rate and direction of movement of groundwater through aquifers and confining units under the ground.       
      A groundwater model is a computer-based representation of the essential features of a natural hydrogeological system that uses the laws of science and mathematics. It's two key components are a conceptual model and a mathematical model. The conceptual model is an idealized representation (ie. a  picture) of our hydrogeological understanding of the key flow processes of the system. A mathematical model is a set of equations, that are subject to certain assumptions and quantifies the active physical processes in the aquifer system(s) being modeled. The applicability or usefulness of this model depends on the closely of the mathematical equations and their approximates to the physical system being modeled.
The equations that describe the groundwater flow may be solved using different types of models including analytical and numerical models. Because of the simplifications inherent with analytical models, it is not possible to account for field conditions that change with time or space, such as groundwater flow rate, groundwater direction, and other hydraulic properties. Also many analytical models require that the medium should be homogeneous and isotropic. For these reasons the use of numerical models is a very realistic situation.
Numerical models are capable of solving the more complex equations that describe groundwater flow. These models have been extensively used for groundwater analysis since the mid-1960's as high speed digital computers become widely available.



5.2 Modeling Methodology
Table (5-1) outline the stages and tasks in a generic modeling methodology that should be applied to any modeling study.
Table (5-1) Summary of modeling methodology. 
	Stage
	Description
	Tasks

	1
	Conceptualization
	·  Define study objectives (general and specific) and model complexity
·  Complete initial hydrological and hydrogeological interpretation, based on
    available data/reports
·  Prepare conceptual model (in consultative manner)
·  Select modeling code (analytical/numerical)
·  Prepare detailed model study plan (outline grid, layers, boundaries,    
    timeframes, accuracy targets, resources and data required, etc.)
·  Report and review
·  Commonly comprises up to 30% of the study effort (sometimes as high as 60%)

	2
	Calibration
	·  Construct model by designing grid, setting boundary conditions, assigning
    parameters and other data
·  Calibrate model by adjusting parameters until simulation results closely match
    measured data
·  Complete model verification, and sensitivity and uncertainty analysis
·  Report and review
·  Commonly comprises up to 50% of the study effort

	3
	Prediction
	·  Prediction scenarios
·  Complete sensitivity and uncertainty analysis
·  Report and review
·  Commonly comprises up to 20% of the study effort



      The methodology is also presented in figure (5-1). The methodology is designed for application with appropriate flexibility to allow for adoptive management to suit the specifics of any particular project in terms of the study resources, objectives, model study scale, groundwater system, data availability, and so on.
[image: ]

	Fig. 5.1 The groundwater modeling process.


5.3 Description of Numerical Model
MODFLOW, "a three-dimensional finite-difference groundwater flow model" developed by McDonald and Harbaugh (1988) is the most widely-used groundwater model in the world. The main objectives in designing MODFLOW were to produce a program that can be readily modified, is simple to use and maintain, can be executed on a variety of computers with minimal changes, and has the ability to manage the large data sets required when running large problems. The MODFLOW report includes detailed explanations of physical and mathematical concepts on which the model is based and an explanation of how those concepts were incorporated in the modular structure of the computer program. The modular structure of MODFLOW consists of a Main Program and a series of highly-independent subroutines called modules. The modules are grouped in packages. Each package deals with a specific feature of the hydrologic system which is to be simulated such as flow from rivers or flow into drains or with a specific method of solving linear equations which describe the flow system such as the Strongly Implicit Procedure or Preconditioned Conjugate Gradient. The division of MODFLOW into modules permits the user to examine specific hydrologic features of the model independently. This also facilitates development of additional capabilities because new modules or packages can be added to the program without modifying the existing ones.
    MODFLOW is designed to simulate aquifer systems in which (1) saturated-flow conditions exist, (2) Darcy's Law applies, (3) the density of ground water is constant, and (4) the principal directions of horizontal hydraulic conductivity or transmissivity do not vary within the system. MODFLOW can simulate a wide variety of hydrologic features and processes (Fig. 5-2). Steady-state and transient flow can be simulated in unconfined aquifers, confined aquifers, and confining units. A variety of features and processes such as rivers, streams, drains, springs, reservoirs, wells, evapotranspiration, and recharge from precipitation and irrigation also can be simulated. At least three different solution methods have been implemented for solving the finite-difference equations that MODFLOW constructs. The availability of different solution approaches allows model users to select the most efficient method for their problem.
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Fig. 5.2 Features of an aquifer system that can be simulated by MODFLOW.
MODFLOW simulates groundwater flow in aquifer systems using the finite-difference method. In this method, an aquifer system is divided into rectangular blocks by a grid (Fig. 5.3). The grid of blocks is organized by rows, columns, and layers, and each block is commonly called a "cell."
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Fig. 5.3  Example of model grid for simulating three-dimensional groundwater flow.

MODFLOW uses the input data to construct and solve equations of a groundwater flow in the aquifer system. The solution consists of head (groundwater level) at every cell in the aquifer system (except for cells where head was specified as known in the input data sets) at intervals called "time steps." The head can be printed and (or) saved on a computer storage device for any time step. Hydrologists commonly use water levels from a model layer to construct contour maps for comparison with similar maps drawn from field data. They also compare computed water levels at individual cells with measured water levels from wells at corresponding locations to determine the model error. The process of adjusting the model input values to reduce the model error is referred to as the model calibration. In addition to water levels, MODFLOW prints a water budget for the entire aquifer system. The budget lists inflow to and outflow from the aquifer system for all hydrologic features that add or remove water.

5.4 Model Structure
The governing partial differential equation used in MODFLOW is
                    (5-1)
Where:
 ,,  are values of hydraulic conductivity along the x, y, and z coordinates axes, which are assumed to be parallel to the major axes of hydraulic conductivity (LT-1).
h is potentiometric head (L).
W is a volumetric flux per unit volume and represents sources and/or sinks of water (T-1).
 is the specific storage defined as the ratio of the volume of water which can be injected per unit volume of aquifer material per unit change in head (L-1),  and t is time (T).
   In general ,  ,, and  may be functions of space (, =,   , etc.) and W may be a function of space and time (; equation (4-1) describes groundwater flow under nonequilibrium condition in a heterogeneous and anisotropic medium, provided the principal axes of hydraulic conductivity are aligned with the coordinate directions.
   Analytical solutions of equation (5-1) are possible for very simple systems, so various numerical methods must be employed to obtain approximate solutions for complex systems. One such approach is the finite difference method, wherein the continuous system described by equation (5-1) is replaced by a finite set of discrete points in space and time, and the partial derivatives are replaced by terms calculated from the differences  in head values at these points. The process leads to systems of simultaneous linear algebraic difference equations; their solution yields of head at specific points and times.
    The sum of all flows into and out of the cell must be equal to the rate of change in storage within the cell. Under the assumption that the density of groundwater is constant, the continuity equation expressing the balance of flow for a cell is

                                                                                    (5-2)

 Where:
  is a flow rate into the cell (L3t-1);

 is the specific storage
  is the volume of the cell (L3), and
 is the change in head over a time interval of length 
    Figure (5-4) depicts a cell i,j,k and six adjacent aquifer cells i-1,j,k; i+1,j,k; i,j-1,k; i,j+1,k; i,j,k-1; and i,j,k+1. To simplify the following development, flows are considered positive if they are entering cell i,j,k; and the negative sign usually incorporated in Darcy's law has been dropped from all terms. Following these conventions, flow into cell i,j,k in the row direction from cell i,j-1,k (figure 5-5), according to Darcy's law as
                                        (5-3)
Where
 is the head at node i,j,k, and  that at node i,j-l,k;  is the volumetric fluid discharge through the face between cells i,j,k and i,j-1,k (L3T-1);  is the hydraulic conductivity along the row between nodes i,j,k and i,j-1,k (LT-1);  is the area of the cell faces normal to the row direction; and  is the distance between nodes i,j,k and i,j-1,k (L).the index j-1/2 is used to indicate the space between nodes. It does not indicate a point exactly half way between nodes. 
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Fig. 5.4 Cell i,j,k and indices for the six adjacent cells.
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Fig. 5.5  Flow into cell i,j,k from cell i,j-1,k
       Similar expressions can be written approximating the flow into the cell through the remaining five faces, i.e., for flow in the row direction through the face between cells i,j,k and i,j+l,k,

                                        (5-4)
While for the column direction, flow into the block through the forward face is
                                         (5-5)
Flow into the block through the rear face is
                                         (5-6)
For the vertical direction, inflow through the bottom face is

                                          (5-7)
While inflow through the upper face is given by
                                          (5-8)
       The notation can be simplified by combining grid dimensions and hydraulic conductivity into a single constant, the "hydraulic conductance" or, more simply, the "conductance," for example.

                                                                (5-9)
Where
 is the conductance in row i and layer k between nodes i,j-1,k and i,j,k (L2T-1).
       Conductance is thus the product of hydraulic conductivity and cross-sectional area of flow divided by the length of the flow path (in this case, the distance between the nodes.) Substituting conductance from equation (4-9) into equation (4-3) yields.
                                           (5-10)
Similarly the remaining equations
                                           (5-11) 
                                            (5-12)
                                            (5-13)
                                            (5-14)
                                            (5-15) 

    To account for flows into the cell from features or processes external to the aquifer, such as streams, drains, areal recharge, evapotranspiration or wells, additional terms are required. These flows may be dependent on the head in the receiving cell but independent of all other heads in the aquifer, or they may be entirely independent of head in the receiving cell.
     Flow from outside the aquifer may be represented by the expression
                                                                 (5-16)
Where
  represents flow from the nth external source into cell i,j,k (L3T-1).
 are constants ((L2T-1) and (L3T-1), respectively).
   For example, suppose a cell is receiving flow from two sources, recharge from a well and seepage through a riverbed. For the first source (n=1), since the flow from the well is assumed to be independent of head,  is zero and  is the recharge rate for the well. In this case,
                                                                                   (5-17) 
   For the second source (n=2), the assumption is made that the stream aquifer interconnection can be treated as a simple conductance, so that the seepage is proportional to the head difference between the river stage and the head in cell i,j,k (figure 4-6); thus we have
                                                    (5-18)
Where
 is the head in the river (L) and
 is a conductance controlling flow from the river into cell i,j,k (L2T-1).
       For example, in the situation shown schematically in figure (5-6), CRIV would be given as the product of the vertical hydraulic conductivity of the riverbed material and the area of the streambed as it crosses the cell, divided by the thickness of the streambed material. Equation (5-18) can be rewritten as
                                    (5-19)
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Fig. 5.6 Conceptual representation of leakage through a riverbed into a cell. 

    The negative conductance term, - corresponds to  of equation (5-16), while the term  corresponds to . Similarly, all other external sources or stresses can be represented by an expression of the form of equation (4-16). In general, if there are N external sources or stresses affecting a single cell, the combined flow is expressed by

               (5-20)

Defining  and  by the expressions
 
And
 
    The general flow term for cell i,j,k is
                                                               (5-21)
    Applying the continuity equation (4-2) to cell i,j,k, taking into account the flows from the six adjacent cells, as well as the external flow rate, QS, yields
                                                         (5-22)
Where
 is a finite difference approximation for the derivative of head with respect to time (LT-1);
 represents the specific storage of cell i,j,k (L-1); and
 is the volume of cell i,j,k (L3).
Equations (4-10) through (4-15) and (4-21) may be substituted into equation (4-22) to give the finite-difference approximation for cell i,j,k as
                                                           (5-23)
    Figure (5-7) shows a hydrograph of head values at node i.j,k. Two values of time are shown on the horizontal axis: tm, which is the time at which the flow terms of equation (4-23) are evaluated; and tm-1, a time which precedes tm. The head values at node i,j,k associated with these times are designated by superscript as  and  respectively. An approximation to the time derivative of head at time tm is obtained by dividing the head difference  by the time interval tm-tm-1; that is,
   
   This is termed a backward-difference approach, in that h/t is approximated over a time interval which extends backward in time from tm, the time at which the flow terms are calculated.
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Fig.  5.7  Hydrograph for cell i,j,k.
     Equation (5-23) can be rewritten in backward-difference form by specifying flow terms at tm, the end of the time interval, and approximating the time derivative of head over the interval tm-1 to tm; that is:

                                                (5-24)
    Equation (5-24) is a backward-difference equation which can be used as the basis for a simulation of the partial differential equation of ground water flow, equation (4-1). Like the term Qi,j,k, the coefficients of the various head terms in equation (4-24) are all known, as is the head at the beginning of the time step, . The seven heads at time tm, the end of the time step, are unknown; that is, they are part of the head distribution to be predicted. Thus equation (5-24) cannot be solved independently, since it represents a single equation in seven unknowns. However, an equation of this type can be written for each active cell in the mesh; and, since there is only one unknown head for each cell, we obtain a system of "n" equations in "n" unknowns. Such a system can be solved simultaneously.
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(3) For three artesian identical wells at a distance B apart in a straight line
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(3) For two identical unconfined wells at a distance B
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(r, h) is any point on the curve.
R = Radius of influence.
K = Permeability coefficient.

C = a constant, the value of which depends upon the value
of IR




image62.emf

image63.emf

image64.emf

image65.emf

image66.emf

image67.emf

image68.emf

image69.emf

image70.emf

image71.emf

image72.emf

image1.jpeg




image73.emf

image74.emf

image75.emf

image76.emf

image77.emf

image78.emf

image79.gif
Unconfined and confined aquifers —
Ground-water flow and storage changes @ Ephemeral streams — Exchange of water
Faults and other barriers—Resistance fo _ With aquifers

horizontal ground-water flow © Reservoirs— Exchange of water with
Fine-grained confining units and interbeds ~_ adufers

Confining unttoGround-wator fow ana @ Recharge rom preciptaton and rigation
storage changes @ Evapotranspiration

Rivers — Exchange of water with aquiers () Wells —Withdrawal or recharge at speci-
Drains and springs—Discharge of water  fld rates

from aquiters

Figure 1. Features of an aquifer system that can be simulated by MODFLOW.
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Figure 2. Example of model grid for simulating three-

dimensional ground-water flow.
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